185 research outputs found

    Influence of grid configuration on current conducting behaviour in PV installations

    Get PDF
    On the roof of an industrial site a 385 kWp PhotoVoltaic installation is operational. When production of this system reaches 60% of the installed power, the circuit breaker trips. At sufficient production, measurements show a high distortion of phase voltage and variable waveform of both phase voltage and current. Analysis of the installation showed that a Yy0 transformer is used introducing a high zero sequence impedance. Unbalance in the injected current combined with a high zero sequence impedance leads to a high neutral-ground voltage and distorted phase-neutral voltages. In this paper it will be shown that the tripping of the circuit breaker is caused by the measurement method of the device. This paper analyses the practical measurement results, causes of errors and the solution to the stated problem

    Overview of increasing the penetration of renewable energy sources in the distribution grid by developing control strategies and using ancillary services

    Get PDF
    Increasing the renewables energy resources in the distribution network is one of the main challenges of the distributed system operator due to instability, power quality and feeder capacity problems. This paper proposes a solution for further penetration of distributed energy resources, by developing control strategies and using ancillary services. Besides the penetration issues, the control strategies will mitigate power quality problems, voltage unbalance and will increase the immunity of the grid by provision of fault ride through capabilities

    Technical SWOT analysis of decentralised production for low voltage grids in Flanders

    Get PDF
    The increasing energy prices, combined with high funding by the government, has resulted in a massive integration of decentralised electrical energy production units in Belgium. These systems are mainly PhotoVoltaic systems and the sudden increase of both number and power ratio of the DG systems has put additional stress on the distribution network. In this paper a technical SWOT analysis is presented. The researchers believe that the solution to decompress the stress can result in additional benefits for both, end user and distribution network operators

    Transition from Islanded to grid-connected mode of microgrids with voltage-based droop control

    Get PDF
    Microgrids are able to provide a coordinated integration of the increasing share of distributed generation (DG) units in the network. The primary control of the DG units is generally performed by droop-based control algorithms that avoid communication. The voltage-based droop (VBD) control is developed for islanded low-voltage microgrids with a high share of renewable energy sources. With VBD control, both dispatchable and less-dispatchable units will contribute in the power sharing and balancing. The priority for power changes is automatically set dependent on the terminal voltages. In this way, the renewables change their output power in more extreme voltage conditions compared to the dispatchable units, hence, only when necessary for the reliability of the network. This facilitates the integration of renewable units and improves the reliability of the network. This paper focusses on modifying the VBD control strategy to enable a smooth transition between the islanded and the grid-connected mode of the microgrid. The VBD control can operate in both modes. Therefore, for islanding, no specific measures are required. To reconnect the microgrid to the utility network, the modified VBD control synchronizes the voltage of a specified DG unit with the utility voltage. It is shown that this synchronization procedure significantly limits the switching transient and enables a smooth mode transfer

    Voltage-based droop control of renewables to avoid on-off oscillations caused by overvoltages

    Get PDF
    To achieve the environmental goals set by many governments, an increasing amount of renewable energy, often delivered by distributed-generation (DG) units, is injected into the electrical power system. Despite the many advantages of DG, this can lead to voltage problems, especially in times of a high local generation and a low local load. The traditional solution is to invest in more and stronger lines, which could lead to massive investments to cope with the huge rise of DG connection. Another common solution is to include hard curtailment; thus, ON-OFF control of DG units. However, hard curtailment potentially leads to ON-OFF oscillations of DG and a high loss of the available renewable energy as storage is often not economically viable. To cope with these issues, applying a grid-forming control in grid-connected DG units is studied in this paper. The voltage-based droop control that was originally developed for power sharing in islanded microgrids, enables an effective way for soft curtailment without communication. The power changes of the renewable energy sources are delayed to more extreme voltages compared to those of the dispatchable units. This restricts the renewable energy loss and avoids ON-OFF oscillations

    Power quality improvements through power electronic interfaced distributed generation

    Get PDF
    In low-voltage distribution networks a large amount of single-phase nonlinear loads are connected. This leads to the combined presence of power system unbalance and harmonic distortion. The research presented in this paper focusses on these steady-state power quality problems. It uses a harmonic load flow program, implemented in symmetrical components, to investigate the influence of several single-phase inverter control strategies used to connect any kind of primary energy source to the grid. The influence of these single-phase distributed generation units in the three-phase four-wire distribution network is discussed by means of two recently formulated indicators that combine the power system unbalance and the existing harmonics

    Automatic power sharing modification of P/V droop controllers in low-voltage resistive microgrids

    Get PDF
    Microgrids are receiving an increasing interest to integrate the growing share of distributed generation (DG) units in the electrical network. For the islanded operation of the microgrid, several control strategies for the primary control have been developed to ensure a stable microgrid operation. In lowvoltage microgrids, active power/voltage (P/V ) droop controllers are gaining attention as they take into account the resistive nature of the network lines and the lack of directly-coupled rotating inertia. However, a problem often cited with these droop controllers is that the grid voltage is not a global parameter. This can influence the power sharing between different units. In this paper, it is investigated whether this is actually a disadvantage of the control strategy. It is shown that with P/V droop control, the DG units that are located electrically far from the load centres automatically deliver a lower share of the power. This automatic power sharing modification can lead to decreased line losses, thus, an overall better efficiency compared to the methods that focus on perfect power sharing. In this paper, the P/V and P/f droop control strategies are compared with respect to this power sharing modification and the line losses

    Smart microgrids and virtual power plants in a hierarchical control structure

    Get PDF
    In order to achieve a coordinated integration of distributed energy resources in the electrical network, an aggregation of these resources is required. Microgrids and virtual power plants (VPPs) address this issue. Opposed to VPPs, microgrids have the functionality of islanding, for which specific control strategies have been developed. These control strategies are classified under the primary control strategies. Microgrid secondary control deals with other aspects such as resource allocation, economic optimization and voltage profile improvements. When focussing on the control-aspects of DER, VPP coordination is similar with the microgrid secondary control strategy, and thus, operates at a slower time frame as compared to the primary control and can take full advantage of the available communication provided by the overlaying smart grid. Therefore, the feasibility of the microgrid secondary control for application in VPPs is discussed in this paper. A hierarchical control structure is presented in which, firstly, smart microgrids deal with local issues in a primary and secondary control. Secondly, these microgrids are aggregated in a VPP that enables the tertiary control, forming the link with the electricity markets and dealing with issues on a larger scale
    corecore